Cytogenetics in the Diagnostic Laboratory

Arslangiin Bayarmaa

Human Genetics, Ninewells Hospital, Dundee

Cytogenetics in the Diagnostic Laboratory

- Scottish pregnancy screening
- Conventional techniques
- Clinical Applications
- Array CGH (Comparative Genomic Hybridisation)

- Screening involving blood test
- Screening involving serum test
- Screening involving ultrasound test

Screening involving blood test

Routine blood test: as early as possible (8-10 weeks)

Haemoglobin, group, rhesus and antibodies, Syphillis, Hepatitis B, HIV and Rubella.

- Screening involving serum test: 1st trimester combined test for Down's syndrome (11-13 weeks)
 - Biochemistry screeninig PAPP-A (Pregnancy Associated Plasma Protein A), hCG (human Chorionic Gonadotropin)
 - Ultrasound screening Nuchal Translucency (NT)

- Screening involving ultrasound test:
 - Dating scan 8-14 weeks
 - Fetal anomaly scan 18-21 weeks

Cytogenetics in the Diagnostic Laboratory

- Scottish pregnancy screening
- Conventional techniques
- Clinical Applications
- > Array CGH

G-banded karyotype

Conventional cytogenetic analysis involves examination of a G-banded karyotype to detect changes in the 46 human chromosomes by light microscopy

Metaphase

Karyotype

Cytogenetics in the Diagnostic Laboratory

- Scottish pregnancy screening
- Conventional techniques
- Clinical Applications
- > CGH

Why do chromosome studies?

- Diagnosis
- Phenotype prediction
- Prognosis
- Recurrence risk
- Reproductive future
- Genetic counseling
- Prenatal diagnosis

Most common cytogenetic referrals

- Constitutional postnatal
 - > Blood
 - Skin / other solid tissue
- Constitutional prenatal
 - Amniotic fluid
 - Chorionic villus sampling
- Molecular Cytogenetics
 - All samples above
 - > DNA

Postnatal: blood referrals

Postnatal: blood referrals

- Congenital abnormalities (eg: heart defect) in neonates
- Failure to thrive/developmental delay
- Idiopathic mental retardation
- Sexual ambiguity & delayed puberty
- Recurrent miscarriage/infertility couples

Lithium-heparin sample

- Culture time ~ 3 days
- Results up to 28 days
- Urgent results within 10 days

Neonate with congenital abnormalities

Edward syndrome (+18) ~1:5,000 livebirths

QuickTime™ and a TIFF (LZW) decompressor needed to see this picture.

unless mosaic (10%)

Trisomy 18 in a neonate 47,XY,+18

- Short upturned nose
- Upward slanting palpebral fissures
- Epicanthic folds
- Small mouth and relative macroglossia
- Brachydactyly
- Single palmar crease ~50%
- Heart defects ~50%
- Duodenal/oesophageal, anal atresia~3%
- Premature ageing
- Most common cause of MR
- Mean IQ 50

Down Syndrome: 47,XY,+21

Rare and most lost before term

- IUGR & profound MR
- Moderate microcephaly
- All degrees of holprosencephaly (failure of forebrain cleavage)
- Lip and palate clefting
- Post-axial polydacytly of hand and feet
- Ears low set & flattened
- Scalp vertex anomalies
- Heart abnormality
- Kidney anomalies

Patau Syndrome: 47,XY,+13

Mental retardation & developmental delay

- Usually young children
- Often associated with dysmorphism
- Unbalanced karyotype causes phenotype
 - Unbalanced translocations
 - deletions
 - duplications
 - Additional "markers"
 - sometimes only detectable by FISH (Fluorescence in situ hybridisation)

Duplication

- 8 year old girl
- Global developmental delay
- Dysmorphic features
- Facial asymmetry
- Marked language delay

Deletion

1

• 32 year old man

Multiple exostoses

Short stature

Brachydactyly

Problems of sexual development

QuickTime™ and a TIFF (LZW) decompressor needed to see this picture.

22

Klinefelter syndrome 47,XXY

- ~1:500-1,000 males
- Prepubertally normal
 12-14 yrs testosterone plateaus
- Testes remain small and firm
- Tall stature (? Due to extra stature genes)
 but eunochoid body habitus
- Fat distribution female
- Gynaecomastia in ~30% (mechanism unknown)
- Most common genetic cause of male infertility
- This phenotype is also variable many men never know they have KS until routine investigations for infertility

Turner Syndrome: 45,X & variants

- Prenatal: Cystic hygroma, heart defects
- > Newborn:
 - redundant neck webbing,
 - peripheral lymphoedema
- Later childhood:
 - short stature,
 - broad chest
 - low hairline to nape
 - neck webbing
 - cubitus valgus
 - > 20% co-arctation of aorta or ASD
- > Adults: primary or secondary amenorrhoea
 - > (gonadal dysgenesis or failure)
 - Many mosaic (may ameliorate phenotype)

Recurrent miscarriages

- > 29 year old woman
- Mother had several pregnancy losses
- Carries balanced translocation
- Patient has had losses & abnormal neonatal deaths due to unbalanced meitotic segregants
- Prenatal diagnosis by CVS or AF

Maternal blood: balanced t(4;18) translocation

Reasons for referral include:

- Abnormal ultrasound scan
- Carrier of a structural rearrangement
- Elevated risk of a chromosome abnormality indicated by biochemical and/or ultrasound maternal screening
- Previous chromosome anomaly
- Maternal age >35
- FH of chromosome abnormality

Prenatal diagnosis is normally carried out using one or more of the following sample types:

- Amniotic fluid
- Chorionic villi
- Eetal blood

- > Amniotic fluid:
- ~15ml at 16/40 gestation

Culture time 2-3 weeks

Results in 2-3 weeks

RTG – 14 days

Rapid aneuploidy
Screening by QF-PCR
(1-2 days)

> CVS:

~10-25mg at 10-13/40 weeks gestation

Long term culture time:

2-3 weeks

Results: 2-3 weeks

RTG – 14 days

Rapid aneuploidy
Screening by QF-PCR
(1-2 days)

Direct preparations:

1-2 days

Amniotic fluid with unbalanced translocation

Trisomy 21 in amniotic fluid

Cytogenetics in the Diagnostic Laboratory

- Department Workload
- Conventional techniques
- Clinical Applications
- Array CGH

Principle of CGH

- Comparative Genomic Hybridisation
- Global karyotype assay does not require informed probe choice
- Hybridise to a slide with clones or oligonucleotides dotted on
- Differentially label test DNA green & control reference DNA red
- Compare fluorescence ratios using software to give a CGH profile
- Analyse profile to demonstrate amplifications or deletions of test
 DNA relative to control

Differential labelling

Test Reference

Label

00000 00000 00000 00000 00000 00000

Hybridisation under competitive conditions: specific binding

Hybridise

Washing to remove unbound material

Wash

Scan Image

Principle of Array CGH

Principle of Array CGH

Array CGH in the Diagnostic Lab

- Improved resolution over conventional cytogenetics for the detection of copy number changes
 - Confirmation of cytogenetically visible abnormality
 - Elucidation of cytogenetically visible copy number change
 - Detection of Microscopically Invisible Copy Number Change
- Patients with developmental delay + dysmorphism
- Initially used in retrospective cases with normal conventional cytogenetics
- Increasingly used as a front line test

Case 1: Confirmation of cytogenetically visible abnormality

Case 1: Confirmation of cytogenetically visible abnormality

 Case 2: Elucidation of cytogenetically visible copy number

Case 2: Elucidation of cytogenetically visible copy

number change

■ Case 3: Detection of a microscopically invisible copy number

QuickTime™ and a TIFF (LZW) decompressor needed to see this picture.